Some New Estimation Methods for Weighted Regression When There Are Possible Outliers

نویسندگان

  • David M. Giltinan
  • Raymond J. Carroll
  • David Ruppert
چکیده

The problem of estimating the variance parameter robustly in a heteroscedatic linear model is considered. The situation where the variance is a function of the explanatory variables is treated. To estimate the variance robustly in this case, it is necessary to guard against the influence of outliers in the design as well as outliers in the response. By analogy with the homoscedastic regression case, two estimators are proposed which do this. Their performance is evaluated on a number of data sets. We had considerable success with estimators that bound the "self-influence", that is, the influence an observation has on its own fitted value. We conjecture that in other situations, for example, homoscedastic regression, bounding the self-influence will lead the estimators with good robustness properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎....

متن کامل

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

A New Approximation for the Null Distribution of the Likelihood Ratio Test Statistics for k Outliers in a Normal Sample

Usually when performing a statistical test or estimation procedure, we assume the data are all observations of i.i.d. random variables, often from a normal distribution. Sometimes, however, we notice in a sample one or more observations that stand out from the crowd. These observation(s) are commonly called outlier(s). Outlier tests are more formal procedures which have been developed for detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1986